An overview of available Hypoglycemic Triterpenoids and Saponins to cure Diabetes mellitus

Dadu Khan Burdi1, Sumera Qureshi1*, Allah Bux Ghanghro2

Citation: Burdi DK, Qureshi S, Ghanghro AB. An overview of available Hypoglycemic Triterpenoids and Saponins to cure Diabetes mellitus. (2014). Adv. life sci., 1(3), pp. 119-128.

Key words: Hyperglycemia, *Diabetes mellitus*, hypoglycemic triterpenoids and saponins

Abstract

Diabetes mellitus is a condition when excess amount of sugar is excreted out in the urine. It is probably caused due to hyperglycemia; when body fails to produce sufficient amount of insulin which may utilize or help to store these excessive carbohydrates. When a body does not produce sufficient insulin or to help utilize carbohydrates, it results in the accumulation of unutilized sugar in the blood, the condition is termed as hyperglycemia whereas the condition of passing off the excess sugar in the urine is known as *diabetes mellitus*. The excretion of sugar makes a profound effect on health that may lead to disability and death. According to some studies, it may cause myocardial infarction, cardiovascular disorders and terminal nephritis. These complications are reported to be the most important causes of mortality and the principal cause of irreversible blindness. There are hundreds of millions of patients around the world suffering from this disease and the number is spreading with an alarming rate. Such a condition has inspired the therapists to develop the methods which help in controlling this malaise. In this article, we have summarized some of hypoglycemic agents from natural sources especially from plants. Since there is a vast number of plants, which are reported to be utilized traditionally in the crude form for diabetes cure in the past. This article is meant to mention only the hypoglycemic ingredients of triterpenoids origin. This information can be helpful in getting new and more effective drugs in future by utilizing unexplored plants which are reported in the literature to possess hypoglycemic activity. This current review is comprised of the relevant work done up to the year 2007 based on search from Google.

*Corresponding Author: Sumera Qureshi (Email: s.dr582@gmail.com)
1- Dr. M. A. Kazi, Institute of Chemistry, University of Sindh, Institute of Biochemistry, University of Sindh – Pakistan
2- Institute of Biochemistry, University of Sindh, Karachi – Pakistan.
Introduction

There are quite a large number of people who suffer from diabetes that may result from hyperglycemia. According to one estimate there were 124.7 million cases of diabetes mellitus in the recent past around the world [1-3]. Whereas another study reveals that the number is expected to increase by 2025 to 300 million from 151 million as recorded in the year 2000 [2]. With the passage of time there is an exponential growth in the number of patients with diabetes mellitus and it would be a leading cause of higher death rates in the near future. It therefore, has become a big challenge to the therapists to devise the methods to effectively control this disease. There is a need of exploring the effective ways to bring about awareness to the masses regarding prevention measures and proper ways and means to cure the disease, diabetes mellitus. If such efforts are not dealt with properly and seriously, the disease could be a leading cause of deaths. A number of drugs have been discovered in this regard. However, the disease still has a profound effect on human life. Nowadays as the phytochemical research has acquired a predominant position in the field of medicine, the interest is advanced to explore the plants which may prove to be beneficial for the control of this disease.

Methods

Search strategy and selection criteria

A systematic search was carried out from Google by entering keywords like, “Hypoglycemic Triterpenoids” and “saponins” with no filter. We found about 36,000 results, from which only 80 relevant articles.

Discussion

Hypoglycemic constituents Role

The compound which brings the excessive sugar level towards the normal range by certain biochemical reactions is known as hypoglycemic component. There are several classes of organic compound which possess hypoglycemic activity such as terpenoids, steroids, saponins flavonoids, alkaloids, glycans proteins [2]. To cite all of them is beyond the scope of this article. Hence the compound of triterpeniod origin obtained from various plants is described. Hence the hypoglycemic compounds of triterpeniod origin reported since the beginning of systematic investigation up to the year 2007 from various plants are described. The relevant constituents are summarized in tables (1- 6) which are specified with the particular groups of triterpenoids.

Triterpenoids and saponins with hypoglycemic activity

Most of the hypoglycemic triterpenoids (Table 1) and their glycosides (Table 2-3) belong to oleanane group. Some other groups with the similar activity comprising of ursane (Table 4), lupane (Table 5) are reported to a lesser extent.
<table>
<thead>
<tr>
<th>Compound name</th>
<th>Source</th>
<th>Part used</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycyrrhetinic acid, Syn.-Sumaresinoleic acid, 3β-Hydroxy-11-oxo-12-oleanen-30-oic acid; (18α) – form</td>
<td>Peterium Spinosum</td>
<td>Roots</td>
<td>[5]</td>
</tr>
<tr>
<td>Hederagenin acid, 3β,23-Dihydroxy-12-oleanolic acid; (18β) – form</td>
<td>Olea europaea (olive) and Campsis grandiflora</td>
<td>Leaves</td>
<td>[6,7]</td>
</tr>
<tr>
<td>Oleanolic acid, 3β-Hydroxy-12-oleanen-28-oic acid</td>
<td>Memordica Cochinchinensis, Olea Europae (olive) Campsis Grandiflora Aralia dasypytlla Mig Beuvardia terniflora Syzegium aromaticum(Clove)</td>
<td>Seeds, Leaves Stem Unopened flower bud</td>
<td>[1,8] [6,7] [9,10]</td>
</tr>
<tr>
<td>Maytenfolic acid, 3β,22α-Dihydroxy-12-oleanen-29-oic acid</td>
<td>Salacia oblonga</td>
<td>Roots</td>
<td>[12]</td>
</tr>
<tr>
<td>Sapogenol, 2β,3β,23-trihydroxy-12-oleanen-28-acetate</td>
<td>Bumelia santorum</td>
<td>Roots and bark</td>
<td>[1,13]</td>
</tr>
</tbody>
</table>

Table 1: Hypoglycemic triterpenoids of oleanane origin

<table>
<thead>
<tr>
<th>Compound name</th>
<th>Source</th>
<th>Part used</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betavulgarosides II and IV</td>
<td>Beta vulgaris</td>
<td>Roots</td>
<td>[14]</td>
</tr>
<tr>
<td>Boussingosides A₁, C</td>
<td>Baussingaultia basselloides</td>
<td>Aerial parts</td>
<td>[15]</td>
</tr>
<tr>
<td>Elatosides A₁, E, G, H and I</td>
<td>Aralia elata</td>
<td>Root cortex, bark and young shoots</td>
<td>[16-20]</td>
</tr>
<tr>
<td>EscinsA₁, Ib, IIa, IIB (Acylated polyhydroxyoleanene-3-O-monodesmoside derivatives)</td>
<td>Aesculus hippocastanum</td>
<td>Seed</td>
<td>[14,17,21]</td>
</tr>
<tr>
<td>2′-O-β-D-Glucopyranosylmomordinlc</td>
<td>Momordica cochinchinensis and Panex japonicus Kochia scoporia</td>
<td>Leaves, Fruit</td>
<td>[14] [14,22]</td>
</tr>
<tr>
<td>Gymnemic acid II, III, IV, V and VII</td>
<td>Gymnema sylvestre</td>
<td>Leaves</td>
<td>[23-27]</td>
</tr>
<tr>
<td>Gymnemoside b</td>
<td>Gymnema sylvestre</td>
<td>Leaves</td>
<td>[14,23,25]</td>
</tr>
<tr>
<td>Momordin Ic</td>
<td>Momordi cacochinchinensis and Panex japonicus Kochia scoporia</td>
<td>Leaves, Fruit</td>
<td>[14] [22]</td>
</tr>
</tbody>
</table>

Table 2: Hypoglycemic monodesmosidesaponins of oleanane origin
The plants which are reported to possess hypoglycemic activity may be taken under consideration for being the source of these important bioactive compounds with specific reference to being anti-hyperglycemic activity. In the literature, there are lot of plants which are used traditionally for treating diabetes mellitus [1-3]. Some of them which are mentioned, along with the antidiabetic constituents, in this article are, *Olea europea, Campsis grandiflora, Beta vulgaris, Gymnema sylvestre and Panax ginsing*.

The isolation of several monodesmoside derivatives (Table 2) and bisdesmoside derivatives (Table 3) of oleanolic acid obtained from various plant species reported to be hypoglycemic are worth noting as these groups of compounds have larger contribution in this respect.

<table>
<thead>
<tr>
<th>Compound name</th>
<th>Source</th>
<th>Part used</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boussingosides A₂ and A₃</td>
<td>Boussingallia balanelloides</td>
<td>Aerial parts</td>
<td>[15]</td>
</tr>
<tr>
<td>Chikusetsu saponin IV</td>
<td>Aralia elata
Memordi cacochinchnensis and Panax japonicus
Leaves</td>
<td>Root cortex</td>
<td>[14,20]</td>
</tr>
<tr>
<td>Desacylsenega saponin a and b</td>
<td>Polygala senega var. latifolia</td>
<td>Roots/Rhizomes</td>
<td>[29,30]</td>
</tr>
<tr>
<td>Gymnema saponin V and Gymnemoside f</td>
<td>Gymnema sylvestre</td>
<td>Leaves</td>
<td>[25]</td>
</tr>
<tr>
<td>E-Senega saponin a and b</td>
<td>Polygala senega var. latifolia</td>
<td>Roots/Rhizomes</td>
<td>[14,30]</td>
</tr>
<tr>
<td>Z-Senega saponin a and b</td>
<td>Polygala senega var. latifolia</td>
<td>Roots/Rhizomes</td>
<td>[14,30]</td>
</tr>
<tr>
<td>Z-Senegins II</td>
<td>Polygala senega var. latifolia</td>
<td>Roots/Rhizomes</td>
<td>[14,30-33]</td>
</tr>
<tr>
<td>Z-Senegins III</td>
<td>Polygala senega var. latifolia</td>
<td>Roots/Rhizomes</td>
<td>[14,33]</td>
</tr>
<tr>
<td>Z-Senegins IV</td>
<td>Polygala senega var. latifolia</td>
<td>Roots/Rhizomes</td>
<td>[30]</td>
</tr>
<tr>
<td>Stipuleanoside R₂</td>
<td>Aralia elata</td>
<td>Root cortex</td>
<td>[18]</td>
</tr>
</tbody>
</table>

Table 3: Hypoglycemic bisdesmosidesaponins of oleanane origin
Conclusion

The work by coordinating the activity of a particular plant used for treatment of diabetes, to the presence of antidiabetic agents hitherto reported may lead to very promising results. By viewing above data related to the hypoglycemic activity of the aforementioned compounds, it seems that these ingredients may be exploited for large scale supply of the drugs at industrial scale to cope with the increasing demand of such drugs. The objective can also be achieved by utilizing the constituents available in abundance, which are closely related to the framework of the active principles by bringing them in conformity to the activity positive entity by certain chemical transformations. The promising results may be achieved by exploiting the experiments which have been conducted to check the structure-activity relationship.
For example, the sugar moieties attached at position C-3 of the olenane framework enhance the hypoglycemic activity of the relevant glycoside which may be either mono- or oligoglycoside; whereas the attachment of sugar groups at position C-28 decreases or render the molecule biologically inactive [17-20,31,47].

Competing interests:

The authors declare no competing interests. Although, the sources of some known compounds may be more than those reported in the article. The incorporation of only selected plants is due to their citation as a source of isolation of respective hypoglycemic constituents.
Acknowledgement: One of the authors (D.K. Burdi) is grateful to Professor V. U. Ahmad for providing him library facilities at International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Pakistan.

References

13. Nobrega Almeida R, Barbosa Filho M, Ramnath Naik S. Chemistry and pharmacology of an ethanol extract of Bumelia sartorum. Journal of

