Date Received: 09/15/2013; Date Revised: 10/05/2013; Date Published Online: 10/25/2013

Heritability, heterosis and heterobeltiosis studies for morphological traits of maize (Zea maysL.) seedlings

Qurban Ali<sup>1\*</sup>, Muhammad Ahsan<sup>1</sup>, Fawad Ali<sup>1</sup>, Muhammad Aslam<sup>1</sup>, Nazar Hussain Khan<sup>1</sup>, Mubashir Munzoor<sup>1</sup>, Hafiz Saad Bin Mustafa<sup>2</sup>, Sher Muhammad<sup>3</sup>

Key words: Heterosis, Heterobeltiosis, Heritability, Genetic advance, Zea mays

## Abstract

**Background:** Maize is one of most important cereal crop in world after wheat and rice. It is grown in Pakistan as a major cash crop cultivation in the area of 1083 thousand hectares producing 3990 thousand tones. Maize is dual propose crop it is used as feed for livestock and food for human. It is also used as a raw material in textile, food and medicine industries. The present study was conducted to evaluate parents and  $F_1$  hybrids of maize for seedling traits including heritability, heterosis and heterobelteiosis.

Methodology: The genetic material was comprises of twelve parents and including their 36  $F_1$  hybrids. The parents and  $F_1$  hybrids were sown in the iron treys filled with sand in three replications following completely randomized design. The data was recorded for fresh root length, fresh shoot length, fresh root-to-shoot length ratio, fresh root weight, fresh shoot weight and fresh root-to-shoot weight ratio. The data was subjected for analysis genotypic and phenotypic coefficients of variance. The genetic advance was calculated by using Falconer (1989) formula.

**Results**: The average batter performance was given by B-336, EV-347, EV-1097Q and B-327. The  $F_1$  hybrids, EV-1097Q × EV-347, EV-1097Q × EV-340, Raka-poshi × EV-347, B-327 × B-316 and Sh-139 × EV-347 showed higher values of heterosis and heterobeltiosis for respected studied traits of maize seedlings.

Conclusion: In this study, it is concluded that the  $F_1$  hybrids, EV-1097Q x EV-347, EV-1097Q x EV-340, Raka-poshi x EV-347, B-327 x B-316 and Sh-139 x EV-347 may be used as higher yield maize hybrids and parents EV-347, EV-1097Q, B-327 and B-316 may be used to develop higher yield maize hybrids following heterosis breeding scheme.

52 Advancements in Life Sciences Vol. 1, Issue 1

<sup>\*</sup>Corresponding Author: Qurban Ali (Email: saim1692@gmail.com) 1Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad - Pakistan 2Oilseeds Research Institute, AARI, Faisalabad - Pakistan 3CABB, University of Agriculture, Faisalabad - Pakistan

## Introduction

Maize is one of most important cereal crop in world after wheat and rice. It is grown in Pakistan as a major cash crop cultivation in the area of 1083 thousand hectares producing 3990 thousand tones. Maize is dual propose crop it is used as feed for livestock and food for human. It is also used as a raw material in textile, food and medicine industries. It contains 9.50% fiber, 72%, 3.0% sugar, starch, 4.80% oil, 10% protein and 1.70% ash [1]. The present study was conducted to evaluate parents and F<sub>1</sub> hybrids of maize for seedling traits. In the selection of maize genotypes with higher yield, higher heritability and genetic advance help are important which in turn increase the grains production of maize.

The major objective of this current study was to asses the potential of different varities of maize crop on account of their seedling characteristics.

### Methods

The present study was carried out in the glasshouse of Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan during crop season of 2012. The genetic material was comprises of twelve parents and including their 36 F1 hybrids. The parents and F1 hybrids were sown in the iron treys filled with sand in three replications following completely randomized design. The data was recorded fresh shoot length, for fresh root length, fresh root weight, fresh shoot weight, fresh root-to-shoot weight ratio and fresh root-to-shoot length ratio. The data was subjected for analysis of variance [2]. The genotypic and phenotypic coefficients

of variance were calculated by Kwon and Torrie (1964) technique [3]. The genetic advance was calculated by using Falconer (1989) formula [4].

#### Parents and F1 hybrids

|         |               |               | -              |
|---------|---------------|---------------|----------------|
| Pop/209 | B-11×Pop/209  | EV-           | Raka-          |
|         |               | 1097Q×Pop/209 | poshi×Pop/209  |
| B-316   | B-11×B-316    | EV-1097Q×B-   | Raka-poshi×B-  |
|         |               | 316           | 316            |
| EV-340  | B-11×EV-340   | EV-1097Q×EV-  | Raka-poshi×EV- |
|         |               | 340           | 340            |
| E-322   | B-11×E-322    | EV-1097Q×E-   | Raka-poshi×E-  |
|         |               | 322           | 322            |
| F-96    | B-11×F-96     | EV-1097Q×F-96 | Raka-poshi×F-  |
|         |               |               | 96             |
| EV-347  | B-11×EV-347   | EV-1097Q×EV-  | Raka-poshi×EV- |
|         |               | 347           | 347            |
| B-11    | B-336×Pop/209 | B-327×Pop/209 | Sh-139×Pop/209 |
| B-336   | B-336×B-316   | B-327×B-316   | Sh-139×B-316   |
| EV-     | B-336×EV-340  | B-327×EV-340  | Sh-139×EV-340  |
| 1097Q   |               |               |                |
| B-327   | B-336×E-322   | B-327×E-322   | Sh-139×E-322   |
| Raka-   | B-336×F-96    | B-327×F-96    | Sh-139×F-96    |
| poshi   |               |               |                |
| Sh-139  | B-336×EV-347  | B-327×EV-347  | Sh-139×EV-347  |

### Results

It is cleared from table 1 that higher heritability was recorded for fresh root and shoot length and fresh shoot weight while higher genetic advance was recorded for fresh root and shoot length, fresh shoot weight and fresh root-to-shoot weight ratio. Selection of higher yielding maize genotypes on the basis of higher heritability and genetic advance may be helpful to increase grain production of maize [5,6]. The higher fresh root length was recorded for B-336 (19.693cm), B-316 (16.073cm), EV-1097Q×EV-340 (14.457cm) and Rakaposhi×Pop/209 (14.413cm) as shown from table 2 and figure 1.



Figure 1: Fresh root length of different varieties



Figure 3: Fresh root weight of different varieties



Figure 2: Fresh shoot length of different varieties



Figure 4: Fresh shoot weight of different varieties



Figure 5: Fresh root to shoot length ratio of different varieties



Figure 6: Fresh root to shoot weight ratio of different varieties

| Traits       | Mean    | Grand  | Genotypic | Genotypic    | Phenotypic | Phenotypic     | Environmenta | Environmental  | Heritability | Genetic  |
|--------------|---------|--------|-----------|--------------|------------|----------------|--------------|----------------|--------------|----------|
|              | sum of  | mean   | variance  | coefficient  | variance   | coefficient of | variance     | coefficient of | h2bs%        | advance% |
|              | square  |        |           | of variance% |            | variance%      |              | variance%      |              |          |
| Fresh root   | 6.408*  | 11.677 | 1.098     | 30.666       | 4.212      | 60.057         | 3.114        | 51.637         | 26.074       | 40.626   |
| length (cm)  |         |        |           |              |            |                |              |                |              |          |
| Fresh shoot  | 1.538*  | 6.263  | 0.266     | 20.601       | 1.006      | 40.084         | 0.741        | 34.386         | 26.413       | 27.291   |
| length (cm)  |         |        |           |              |            |                |              |                |              |          |
| Fresh root-  | 0.197*  | 1.909  | 0.002     | 3.395        | 0.192      | 31.736         | 0.190        | 31.554         | 1.145        | 4.498    |
| to-shoot     |         |        |           |              |            |                |              |                |              |          |
| length ratio |         |        |           |              |            |                |              |                |              |          |
| Fresh root   | 0.027** | 0.693  | 0.003     | 6.285        | 0.022      | 17.687         | 0.019        | 16.533         | 12.625       | 8.326    |
| weight (g)   |         |        |           |              |            |                |              |                |              |          |
| Fresh shoot  | 0.044** | 0.799  | 0.011     | 11.695       | 0.023      | 16.797         | 0.012        | 12.056         | 48.478       | 15.493   |
| weight (g)   |         |        |           |              |            |                |              |                |              |          |
| Fresh root-  | 0.082*  | 0.909  | 0.009     | 9.787        | 0.065      | 26.670         | 0.056        | 24.810         | 13.466       | 12.965   |
| to-shoot     |         |        |           |              |            |                |              |                |              |          |
| weight ratio |         |        |           |              |            |                |              |                |              |          |

\* Significant at 1% level, \*\* Significant at 5% level

Table 1: Genetic components for morphological traits of maize

| Parents and crosses | Mean of<br>fresh root<br>length | Heterosis of fresh<br>root length | Heterobeltiosis of<br>fresh root length | Mean of fresh<br>shoot length | Heterosis of fresh<br>shoot length | Heterobeltiosis of fresh<br>shoot length |
|---------------------|---------------------------------|-----------------------------------|-----------------------------------------|-------------------------------|------------------------------------|------------------------------------------|
| Pop/209             | 11.357                          | -                                 | -                                       | 5.207                         | -                                  | -                                        |
| B-316               | 16.073                          | -                                 | -                                       | 7.103                         | -                                  | -                                        |
| EV-340              | 13.627                          | -                                 | -                                       | 7.230                         | -                                  | -                                        |
| E-322               | 11.143                          | -                                 | -                                       | 8.180                         | -                                  | -                                        |
| F-96                | 13.653                          | -                                 | -                                       | 7.210                         | -                                  | -                                        |
| EV-347              | 6.733                           | -                                 | -                                       | 5.210                         | -                                  | -                                        |
| B-11                | 9.110                           | -                                 | -                                       | 4.433                         | -                                  | -                                        |
| B-336               | 19.693                          | -                                 | -                                       | 7.807                         | -                                  | -                                        |
| EV-1097Q            | 9.317                           | -                                 | -                                       | 5.277                         | -                                  | -                                        |
| B-327               | 11.893                          | -                                 | -                                       | 5.743                         | -                                  | -                                        |
| Raka-poshi          | 11.760                          | -                                 | -                                       | 5.683                         | -                                  | -                                        |
| Sh-139              | 11.237                          | -                                 | -                                       | 5.787                         | -                                  | -                                        |
| B-11×Pop/209        | 9.600                           | -6.189                            | -15.468                                 | 5.373                         | 11.480                             | 3.201                                    |
| B-11×B-316          | 8.750                           | -30.510                           | -45.562                                 | 5.637                         | -2.283                             | -20.648                                  |
| B-11×EV-340         | 14.770                          | 29.922                            | 8.390                                   | 7.197                         | 23.407                             | -0.461                                   |
| B-11×E-322          | 12.367                          | 22.120                            | 10.978                                  | 6.627                         | 5.074                              | -18.989                                  |
| B-11×F-96           | 9.100                           | -20.047                           | -33.350                                 | 5.390                         | -7.415                             | -25.243                                  |
| B-11×EV-347         | 14.650                          | 84.936                            | 60.812                                  | 5.513                         | 14.345                             | 5.822                                    |
| B-336×Pop/209       | 8.697                           | -43.983                           | -55.840                                 | 4.823                         | -25.871                            | -38.215                                  |
| B-336×B-316         | 11.893                          | -33.495                           | -39.607                                 | 5.113                         | -31.411                            | -34.500                                  |
| B-336×EV-340        | 11.883                          | -28.672                           | -39.658                                 | 6.907                         | -8.136                             | -11.529                                  |
| B-336×E-322         | 13.213                          | -14.301                           | -32.905                                 | 5.147                         | -35.613                            | -37.082                                  |
| B-336×F-96          | 12.883                          | -22.731                           | -34.580                                 | 6.153                         | -18.047                            | -21.179                                  |
| B-336×EV-347        | 10.987                          | -16.852                           | -44.211                                 | 8.733                         | 34.187                             | 11.870                                   |
| EV-1097Q×Pop/209    | 10.280                          | -0.548                            | -9.481                                  | 4.130                         | -21.208                            | -21.731                                  |
| EV-1097Q×B-316      | 12.870                          | 1.379                             | -19.930                                 | 6.607                         | 6.731                              | -6.992                                   |
| EV-1097Q×EV-340     | 14.457                          | 26.021                            | 6.091                                   | 4.197                         | -32.889                            | -41.955                                  |
| EV-1097Q×E-322      | 10.197                          | -0.326                            | -8.495                                  | 5.137                         | -23.656                            | -37.205                                  |
| EV-1097Q×F-96       | 9.787                           | -14.787                           | -28.320                                 | 6.520                         | 4.431                              | -9.570                                   |
| EV-1097Q×EV-347     | 11.717                          | 46.002                            | 25.760                                  | 5.260                         | 0.318                              | -0.316                                   |
| B-327×Pop/209       | 9.483                           | -18.423                           | -20.264                                 | 7.743                         | 41.431                             | 34.823                                   |
| B-327×B-316         | 8.757                           | -37.378                           | -45.521                                 | 7.863                         | 22.418                             | 10.699                                   |

| B-327×EV-340           | 14.090 | 10.423  | 3.400   | 6.690 | 3.135   | -7.469  |
|------------------------|--------|---------|---------|-------|---------|---------|
| B-327×E-322            | 13.483 | 17.060  | 13.369  | 8.860 | 27.268  | 8.313   |
| B-327×F-96             | 9.273  | -27.401 | -32.080 | 7.693 | 18.785  | 6.704   |
| B-327×EV-347           | 9.513  | 2.148   | -20.011 | 6.467 | 18.077  | 12.594  |
| Raka-<br>poshi×Pop/209 | 14.413 | 24.701  | 22.562  | 5.567 | 2.235   | -2.053  |
| Raka-poshi×B-316       | 13.417 | -3.593  | -16.528 | 6.100 | -4.588  | -14.125 |
| Raka-poshi×EV-340      | 11.100 | -12.553 | -18.542 | 5.813 | -9.964  | -19.594 |
| Raka-poshi×E-322       | 11.033 | -3.653  | -6.179  | 6.110 | -11.854 | -25.306 |
| Raka-poshi×F-96        | 15.363 | 20.908  | 12.524  | 7.657 | 18.769  | 6.195   |
| Raka-poshi×EV-347      | 12.453 | 34.679  | 5.896   | 7.623 | 39.963  | 34.135  |
| Sh-139×Pop/209         | 10.473 | -7.288  | -7.778  | 6.170 | 12.250  | 6.624   |
| Sh-139×B-316           | 10.277 | -24.741 | -36.064 | 5.473 | -15.076 | -22.947 |
| Sh-139×EV-340          | 10.277 | -17.335 | -24.584 | 6.527 | 0.282   | -9.728  |
| Sh-139×E-322           | 11.167 | -0.209  | -0.623  | 5.437 | -22.148 | -33.537 |
| Sh-139×F-96            | 11.080 | -10.968 | -18.848 | 6.190 | -4.745  | -14.147 |
| Sh-139×EV-347          | 11.163 | 24.244  | -0.653  | 7.310 | 32.949  | 26.325  |

Table 2: Mean, heterosis and heterobeltiosis for morphological traits of maize seedlings

| Parents and  | Mean fresh    | Heterosis of fresh | Heterobeltiosis of  | Mean of fresh | Heterosis of fresh | Heterobeltiosis of fresh |
|--------------|---------------|--------------------|---------------------|---------------|--------------------|--------------------------|
| crosses      | root-to-shoot | root-to-shoot      | fresh root-to-shoot | root weight   | root weight        | root weight              |
|              | length ratio  | length ratio       | length ratio        |               |                    |                          |
| Pop/209      | 2.181         | -                  | -                   | 0.578         | -                  | -                        |
| B-316        | 2.263         | -                  | -                   | 0.889         | -                  | -                        |
| EV-340       | 1.885         | -                  | -                   | 0.555         | -                  | -                        |
| E-322        | 1.362         | -                  | -                   | 0.589         | -                  | -                        |
| F-96         | 1.894         | -                  | -                   | 0.570         | -                  | -                        |
| EV-347       | 1.292         | -                  | -                   | 0.659         | -                  | -                        |
| B-11         | 2.057         | -                  | -                   | 0.513         | -                  | -                        |
| B-336        | 2.523         | -                  | -                   | 0.957         | -                  | -                        |
| EV-1097Q     | 1.766         | -                  | -                   | 0.652         | -                  | -                        |
| B-327        | 2.071         | -                  | -                   | 0.916         | -                  | -                        |
| Raka-poshi   | 2.069         | -                  | -                   | 0.867         | -                  | -                        |
| Sh-139       | 1.942         | -                  | -                   | 0.751         | -                  | -                        |
| B-11×Pop/209 | 1.787         | -15.677            | -18.085             | 0.557         | 2.077              | -3.689                   |

| B-11×B-316             | 1.558 | -27.881 | -31.168 | 0.489 | -30.243 | -44.994 |
|------------------------|-------|---------|---------|-------|---------|---------|
| B-11×EV-340            | 2.052 | 4.145   | -0.203  | 0.679 | 27.193  | 22.416  |
| B-11×E-322             | 1.866 | 9.173   | -9.253  | 0.559 | 1.543   | -4.983  |
| B-11×F-96              | 1.689 | -14.508 | -17.893 | 0.863 | 59.385  | 51.374  |
| B-11×EV-347            | 2.657 | 58.694  | 29.210  | 0.757 | 29.181  | 14.871  |
| B-336×Pop/209          | 1.803 | -23.334 | -28.527 | 0.491 | -36.040 | -48.694 |
| B-336×B-316            | 2.326 | -2.795  | -7.806  | 0.586 | -36.475 | -38.732 |
| B-336×EV-340           | 1.721 | -21.925 | -31.798 | 0.638 | -15.590 | -33.333 |
| B-336×E-322            | 2.569 | 32.261  | 1.840   | 0.586 | -24.132 | -38.732 |
| B-336×F-96             | 2.094 | -5.187  | -17.011 | 0.589 | -22.829 | -38.419 |
| B-336×EV-347           | 1.259 | -34.013 | -50.105 | 0.577 | -28.548 | -39.673 |
| EV-<br>1097Q×Pop/209   | 2.489 | 26.139  | 14.128  | 1.040 | 69.014  | 59.428  |
| EV-1097Q×B-316         | 1.948 | -3.284  | -13.907 | 0.493 | -36.073 | -44.582 |
| EV-1097Q×EV-<br>340    | 3.445 | 88.737  | 82.776  | 0.977 | 61.944  | 49.821  |
| EV-1097Q×E-322         | 1.985 | 26.919  | 12.421  | 0.940 | 51.545  | 44.149  |
| EV-1097Q×F-96          | 1.501 | -17.952 | -20.723 | 0.849 | 38.877  | 30.148  |
| EV-1097Q×EV-<br>347    | 2.230 | 45.813  | 26.267  | 0.684 | 4.271   | 3.743   |
| B-327×Pop/209          | 1.225 | -42.397 | -43.848 | 0.540 | -27.682 | -41.012 |
| B-327×B-316            | 1.114 | -48.594 | -50.769 | 0.563 | -37.581 | -38.501 |
| B-327×EV-340           | 2.109 | 6.644   | 1.845   | 0.962 | 30.825  | 5.022   |
| B-327×E-322            | 1.522 | -11.366 | -26.534 | 0.640 | -14.976 | -30.167 |
| B-327×F-96             | 1.205 | -39.197 | -41.804 | 0.662 | -10.877 | -27.693 |
| B-327×EV-347           | 1.472 | -12.454 | -28.915 | 0.770 | -2.222  | -15.939 |
| Raka-<br>poshi×Pop/209 | 2.590 | 21.852  | 18.727  | 0.490 | -32.149 | -43.445 |
| Raka-poshi×B-<br>316   | 2.199 | 1.542   | -2.801  | 0.579 | -34.093 | -34.908 |
| Raka-poshi×EV-<br>340  | 1.910 | -3.410  | -7.715  | 0.858 | 20.750  | -1.000  |
| Raka-poshi×E-<br>322   | 1.806 | 5.246   | -12.731 | 0.881 | 20.998  | 1.576   |
| Raka-poshi×F-96        | 2.009 | 1.391   | -2.911  | 0.663 | -7.746  | -23.529 |
| Raka-poshi×EV-<br>347  | 1.636 | -2.671  | -20.942 | 0.749 | -1.835  | -13.610 |

58 Advancements in Life Sciences Vol. 1, Issue 1

| Sh-139×Pop/209 | 1.697 | -17.673 | -22.186 | 0.879 | 32.230  | 17.052  |
|----------------|-------|---------|---------|-------|---------|---------|
| Sh-139×B-316   | 1.881 | -10.542 | -16.884 | 0.556 | -32.222 | -37.495 |
| Sh-139×EV-340  | 1.575 | -17.678 | -18.890 | 0.635 | -2.707  | -15.409 |
| Sh-139×E-322   | 2.054 | 24.328  | 5.773   | 0.460 | -31.259 | -38.677 |
| Sh-139×F-96    | 1.790 | -6.664  | -7.826  | 0.746 | 12.945  | -0.622  |
| Sh-139×EV-347  | 1.529 | -5.441  | -21.257 | 0.776 | 10.050  | 3.330   |

Table 3: Mean, heterosis and heterobeltiosis for morphological traits of maize seedlings

| Parents and   | Mean fresh   | Heterosis of fresh | Heterobeltiosis of | Mean of fresh | Heterosis of fresh   | Heterobeltiosis of fresh |
|---------------|--------------|--------------------|--------------------|---------------|----------------------|--------------------------|
| crosses       | shoot weight | shoot weight       | fresh shoot weight | root-to-shoot | root-to-shoot weight | root-to-shoot weight     |
|               |              |                    |                    | weight ratio  | ratio                | ratio                    |
| Pop/209       | 0.307        | -                  | -                  | 1.884         | -                    | -                        |
| B-316         | 1.060        | -                  | -                  | 0.839         | -                    | -                        |
| EV-340        | 0.748        | -                  | -                  | 0.743         | -                    | -                        |
| E-322         | 1.107        | -                  | -                  | 0.532         | -                    | -                        |
| F-96          | 1.050        | -                  | -                  | 0.543         | -                    | -                        |
| EV-347        | 0.779        | -                  | -                  | 0.847         | -                    | -                        |
| B-11          | 0.416        | -                  | -                  | 1.232         | -                    | -                        |
| B-336         | 1.166        | -                  | -                  | 0.821         | -                    | -                        |
| EV-1097Q      | 0.474        | -                  | -                  | 1.379         | -                    | -                        |
| B-327         | 0.877        | -                  | -                  | 1.045         | -                    | -                        |
| Raka-poshi    | 0.681        | -                  | -                  | 1.273         | -                    | -                        |
| Sh-139        | 0.927        | -                  | -                  | 0.810         | -                    | -                        |
| B-11×Pop/209  | 0.693        | 91.613             | 66.453             | 0.804         | -48.403              | -57.329                  |
| B-11×B-316    | 0.643        | -12.938            | -39.371            | 0.761         | -26.521              | -38.242                  |
| B-11×EV-340   | 1.047        | 79.840             | 39.991             | 0.649         | -34.298              | -47.338                  |
| B-11×E-322    | 0.760        | -0.153             | -31.295            | 0.736         | -16.581              | -40.285                  |
| B-11×F-96     | 0.718        | -2.114             | -31.651            | 1.203         | 35.508               | -2.381                   |
| B-11×EV-347   | 0.992        | 66.025             | 27.397             | 0.763         | -26.582              | -38.075                  |
| B-336×Pop/209 | 0.589        | -19.982            | -49.457            | 0.833         | -38.415              | -55.784                  |
| B-336×B-316   | 0.879        | -20.994            | -24.586            | 0.667         | -19.693              | -20.543                  |
| B-336×EV-340  | 1.120        | 17.053             | -3.945             | 0.570         | -27.180              | -30.648                  |
| B-336×E-322   | 0.691        | -39.190            | -40.738            | 0.849         | 25.396               | 3.305                    |
| B-336×F-96    | 0.859        | -22.473            | -26.329            | 0.686         | 0.550                | -16.478                  |
| B-336×EV-347  | 0.932        | -4.182             | -20.097            | 0.621         | -25.589              | -26.692                  |

| EV-<br>1097Q×Pop/209   | 0.750 | 91.980  | 58.117  | 1.387 | -15.005 | -26.403 |
|------------------------|-------|---------|---------|-------|---------|---------|
| EV-1097Q×B-316         | 0.491 | -36.042 | -53.711 | 1.004 | -9.461  | -27.179 |
| EV-1097Q×EV-<br>340    | 0.661 | 8.129   | -11.636 | 1.479 | 39.433  | 7.292   |
| EV-1097Q×E-322         | 1.050 | 32.827  | -5.121  | 0.896 | -6.262  | -35.048 |
| EV-1097Q×F-96          | 0.944 | 23.857  | -10.095 | 0.899 | -6.416  | -34.775 |
| EV-1097Q×EV-<br>347    | 0.889 | 41.846  | 14.127  | 0.769 | -30.855 | -44.203 |
| B-327×Pop/209          | 0.691 | 16.812  | -21.141 | 0.782 | -46.639 | -58.518 |
| B-327×B-316            | 0.664 | -31.429 | -37.359 | 0.848 | -9.964  | -18.841 |
| B-327×EV-340           | 0.788 | -3.017  | -10.152 | 1.249 | 39.707  | 19.516  |
| B-327×E-322            | 0.908 | -8.437  | -17.952 | 0.704 | -10.672 | -32.605 |
| B-327×F-96             | 0.633 | -34.256 | -39.683 | 1.046 | 31.681  | 0.055   |
| B-327×EV-347           | 0.679 | -18.002 | -22.586 | 1.135 | 19.973  | 8.566   |
| Raka-<br>poshi×Pop/209 | 0.788 | 59.460  | 15.656  | 0.622 | -60.582 | -66.977 |
| Raka-poshi×B-<br>316   | 0.879 | 0.919   | -17.107 | 0.659 | -37.590 | -48.223 |
| Raka-poshi×EV-<br>340  | 0.769 | 7.581   | 2.809   | 1.117 | 10.800  | -12.256 |
| Raka-poshi×E-<br>322   | 0.843 | -5.667  | -23.795 | 1.044 | 15.715  | -17.963 |
| Raka-poshi×F-96        | 0.759 | -12.360 | -27.746 | 0.874 | -3.755  | -31.343 |
| Raka-poshi×EV-<br>347  | 0.889 | 21.781  | 14.170  | 0.843 | -20.496 | -33.812 |
| Sh-139×Pop/209         | 0.750 | 21.643  | -19.029 | 1.171 | -13.078 | -37.853 |
| Sh-139×B-316           | 0.566 | -42.987 | -46.572 | 0.981 | 19.009  | 16.950  |
| Sh-139×EV-340          | 0.988 | 17.977  | 6.583   | 0.643 | -17.205 | -20.627 |
| Sh-139×E-322           | 0.622 | -38.853 | -43.825 | 0.743 | 10.729  | -8.280  |
| Sh-139×F-96            | 0.966 | -2.293  | -8.032  | 0.773 | 14.277  | -4.550  |
| Sh-139×EV-347          | 0.888 | 4.144   | -4.173  | 0.874 | 5.478   | 3.212   |

Table 4: Mean, heterosis and heterobeltiosis for morphological traits maize seedlings

Higher fresh shoot length was recorded for E-322 (8.180cm), B-336×EV-347 (8.733cm), B-327×E-322 (8.860cm) and B-327×B-316 (7.763cm) as shown from table 12 and figure 2. Higher fresh root-to-shoot length ratio was found for EV-1097Q×EV-Raka-poshi×Pop/209 340 (3.445)and (2.590) as shown in Table 2 and Figure 3. Higher fresh root and shoot weight was recorded for B-316 (0.889g, 1.060g), B-336 (0.957g, 1.166g), EV-1097Q×Pop/209 0.750g) B-327×EV-340 (1.040g, and (0.962g, 0.388g) EV-1097Q×E-322 (0.940g, 1.050g) respectively as shown in table 3 and figure 4 and 5. Higher fresh root-to-shoot weight ratio was found for Pop/209 (1.884), EV-1097Q×EV-340 EV-(1.479)and 1097Q×Pop/209 (1.387) as shown in table 3 and figure 6. Higher mean performance indicated that these parents and F<sub>1</sub> hybrids may be used to develop higher yielding maize genotypes [6]. It is persuaded from table 2 that higher heterosis for fresh root length was recorded for B-11 x EV-347 (84.936), Raka-poshi x EV-347 (34.679), EV-1097Q x EV-347 (46.002), B-11 x EV-340 (29.922), EV-1097Q x EV-340 (26.021) and Sh-139 x EV-347 (24.244) while lower heterosis was recorded for B-11 x B-316 (-30.509), B-336 x Pop/209 (-43.983), B-336 x B-316 (-33.495) and B-336 x EV-340 (-28.672). The higher value of heterobeltiosis for fresh root length was recorded for B-11 x EV-347 (60.812), Rakaposhi x EV-347 (5.896), EV-1097Q x EV-347 (25.760), B-11 x E-322 (10.978), Rakaposhi x Pop/209 (22.562), B-327 x E-322 (13.369) and Raka-poshi x F-96 (12.524.

# Discussion

Results similar with this study are also reported in different research reports [7-10]. It is persuaded from table 2 that higher heterosis and heterobeltiosis for fresh shoot length was recorded for B-327 x Pop/209 (41.430, 34.823), Raka-poshi x EV-347 (39.963, 34.134), B-327 x B-316 (22.418, 10.699) and Sh-139 x EV-347 (32.949, 26.324) respectively, while lower for EV-1097Q x EV-340 (-32.889, -41.954), B-336 x E-322 (-35.613, -37.082), B-336 x Pop/209 (-25.870, -38.215) and B-336 x B-316 (-31.410, -34.50) respectively. Similar results were found in other studies [6,7,10]. It is persuaded from table 3 that higher heterosis and heterobeltiosis for fresh rootto-shoot length ratio was recorded for EV-1097Q x EV-340 (88.737, 82.776), B-11 x EV-347 (58.694, 29.210), EV-1097Q x EV-347 (45.812, 26.267) and Sh-139 x E-322 (24.327, 5.772) respectively, while lower for B-336 x EV-347 (-34.012, -50.105), B-327 x Pop/209 (-42.396, -43.847) and B-327 x B-316 (-48.539, -50.769) respectively. Similar results were found by others in different studies [3,6,7,10]. It is persuaded from table 3 that higher heterosis and heterobeltiosis for fresh root weight was recorded for EV-1097Q x Pop/209 (69.014, 59.427), EV-1097Q x EV-340 (61.944, 49.821), B-11 x F-96 (59.384, 51.373) and EV-1097Q x E-322 (51.544, 44.149) respectively, while lower for B-336 x Pop/209 (-36.039, -48.693), B-336 x B-316 (-36.475, -38.732) and EV-1097Q x B-316 (-36.072, -44.581) respectively. These results are consistent with studies too [3,6,7,10]. It is persuaded from table 4 that higher heterosis and heterobeltiosis was recorded for for fresh shoot weight of B-11 x Pop/209 (91.612,

66.453), B-11 x EV-340 (79.839, 39.991), B-11 x EV-347 (66.025, 27.397) and Raka-Pop/209 (59.460, poshi Х 15.655) respectively, while lower for Sh-139 x E-322 (-38.852, -43.825), Sh-139 x B-316 (-42.986, -46.527) and B-336 x B-316 (--40.737) respectively. 39.190. Similar results were found in previous [3,6,7,10]. It is persuaded from table 4 that higher heterosis and heterobeltiosis was recorded for fresh root-to-shoot weight ratio of B-327 x B-316 (144.467, 116.951), EV-1097Q x B-316 (110.151, 91.287), B-327 x F-96 (77.250, 48.293) and Sh-139 x F-322 (88.775, 55.920) respectively, while lower for B-336 x EV-340 (-45.254, -54.098), B-336 x Pop/209 (-32.896, -51.339) and B-336 x B-316 (-31.806, -47.098). Similar results were found in studies on maize before this one [3,6,7,10,11]. Higher values of heterosis and heterobeltiosis of F<sub>1</sub> hybrids indicated that selection of respective parents may be helpful to develop higher yielding maize hybrids under drought conditions.

It was concluded that the  $F_1$  hybrids, EV-1097Q x EV-347, EV-1097Q x EV-340, Raka-poshi x EV-347, B-327 x B-316 and Sh-139 x EV-347 may be used as higher yield maize hybrids and parents EV-347, EV-1097Q, B-327 and B-316 may be used to develop higher yield maize hybrids following heterosis breeding scheme.

# References

- 1. Tahir A, Habib N. Forecasting of maize area and production in pakistan. ESci Journal of Crop Production, (2013); 2(2): 44-48.
- 2. Steel R, Torrie J. Principles and procedures of statistics: a

Biometrical approach MCGraw-HillBook Company Toronto. REDVET, (2012); 13(6): 481.

- Jogloy C, Jaisil P, Akkasaeng C, Kesmala T, Jogloy S. Heritability and correlation for components of crop partitioning in advanced generations of peanut crosses. Asian Journal of Plant Sciences, (2011); 10(1): 60.
- 4. Hallauer AR, Carena MJ, Miranda FilhoJd Quantitative genetics in maize breeding. 2010 of publication; Springer.
- Ali Q, Elahi M, Ahsan M, Tahir MHN, Basra SMA. Genetic evaluation of maize (Zea mays L.) genotypes at seedling stage under moisture stress. International Journal for Agro Veterinary and Medical Sciences, (2011); 5(2): 184-193.
- Ali Q, Ahsan M, Tahir MHN, Basra SMA. Genetic evaluation of maize (Zea mays L.) accessions for growth related seedling traits. International Journal for Agro Veterinary and Medical Sciences, (2012); 6(3): 164-172.
- Khan MB, Hussain N, Iqbal M. Effect of water stress on growth and yield components of maize variety YHS 202. Journal of Research (Science), (2001); 1215-18.
- Shreenivasa A, Singh R. Combining ability studies for some morphophysiological and biochemical traits related to drought tolerance in maize. Indian Journal of Genetics, (2001); 61(1): 34-36.
- Alvi MB, Rafique M, Tariq MS, Hussain A, Mahmood T, et al. Hybrid vigour of some quantitative characters in maize (Zea mays L.). Pakistan Journal of Biological Sciences, (2003); 6(2): 139-141.
- 10. Vafias B, Ipsilandis C. Combining ability, gene action and yielding

performance in maize. Asian J Plant Sci, (2005); 4(1): 50-55.

11. Ahsan M, Farooq A, Khaliq I, Ali Q, Aslam M, et al. Inheritance of various yield contributing traits in maize (Zea mays L.) at low moisture condition. African Journal of Agricultural Research, (2013); 8(4): 413-420.