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ackground: Drought stress is a major limitation in agricultural productivity. In cotton, drought 
tolerance is a multi-genic trait. The quantitative trait loci (QTLs), conferring drought tolerance in 
cotton, could be exploited for stress breeding using marker assisted selection. 

Methods: We have screened drought related varieties of Pakistan using DNA markers to identify reported 
QTLs for drought tolerance. A total of 44 of these varieties were selected. All varieties were sown in the 
field to record relative water content, excised leaf water loss and cell membrane stability under drought 
stress condition. QTLs for relative water content, excised leaf water loss and cell membrane stability were 
checked from all varieties by using DNA markers NAU-2954, NAU-2715, NAU-6672, NAU-8406 and 
NAU-6790. 

Results: Genotypic and phenotypic results showed that the QTL for relative water content qtlRWC-1 
present on chromosome 23, linked marker NAU-2954, could be a major QTL conferring drought 
tolerance in cotton. Using Marker Assisted Selection the variety CRIS-134 showed all concerned QTLs for 
drought tolerance.  

Conclusion: QTL for relative water content qtlRWC-1 could be a major QTL for drought stress tolerance 
in cotton. The variety CRIS-134 may be used for breeding drought tolerant cultivar. 
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Introduction  
For agricultural crops, availability of fresh water is 
declining day by day. Water contents in plants are 
decreased as soil moisture level decreases [1]. As 
stomatal conductance became low, CO2 uptake 
decreased [2]. Under drought stress, ATP content 
decreases as the drought is increased [3]. Under drought 
stress, normal functioning in plants is disturbed [4]. As 
compared with other crops, drought stress drastically 
affects cotton, the most important fiber crop of the 
world [5-9]. In cotton, drought stress lowers leaf water 
content and cell membrane stability [10-12], cellular 
growth [13,14], roots and stem growth [15], number of 
bolls per plant [16] and ultimately reduces yield [17,18].  

Drought stress tolerance in cotton is a complex 
quantitative trait. The traits contributing drought 
tolerance are morphological as well as physiological 
such as relative water content, excised leaf water loss and 
cell membrane stability. The mechanism in plant which 
helps maintain water content in leaves during drought 
stress could enhance drought tolerance [19,20]. The 
most important defense trait under drought stress is 
relative water content, used as measurement of water 
retention capacity in plants [21,22]. Similarly, another 
defense mechanism under drought stress is to maintain 
cell membrane integrity [23]. The exploitation of genetic 
control of these traits could help enhance breeding for 
drought tolerance. 

In crop plants, QTLs mapping for many important 
traits, such as yield, quality, disease resistance and 
drought tolerance is an ongoing research objective for 
researchers around the world. The identification of 
genomic regions carrying genes associated with 
quantitative trait called quantitative trait loci. DNA 
markers linked to the QTLs could be used for selection 
or screening of germplasm to find QTLs for the traits of 
interest. In cotton, QTLs mapping has been conducted 
for various traits such as fiber traits [24,25], boll traits 
[26], chlorophyll contents [27-29], earliness [30-32] and 
yield traits [33-36].  

QTLs for the traits conferring drought tolerance such 
as relative water content [37,38], excised leaf water loss 
[38], cell membrane stability [37], osmotic potential and 
osmotic adjustment [39] has been identified. DNA 

markers linked with these traits could be used for 
marker assisted selection for drought tolerance in 
cotton. 

Using DNA markers for various important traits, 
selection/screening/validation has been conducted for 
many traits such as disease resistance in tomato [40], 
fragrance genes in rice [41] and in wheat for rust 
resistance [42]. Very little attention has been given to 
screen germplasm for drought tolerance using DNA 
markers along with phenotypic screening. This research 
work aims to use marker assisted selection to screen out 
variety/genotype containing QTLs for drought 
tolerance. 

Methods 
All 44 varieties (Table 2) were selected on the basis of 
relevancy with drought tolerance. The collected varieties 
were evaluated using RCBD in three replications. In 
each replication, there were two rows for each variety. 
Each row comprised of ten plants, planted at 30cm plant 
to plant distance and 75 cm row to row distance. 
Irrigation was applied once after 40 days of planting. 
Physiological data related to drought tolerance was 
recorded when plants, under drought stress, showed 
effects of drought stress.  

Relative Water Content (RWC) 
Leave samples from plant were taken for analysis. After 
fresh weight, all samples were dipped in water to 
measure turgid weight. Finally the samples were oven 
dried (70oC) to measure dry weight. The RWC was 
calculated using formula as by [43]. 

RWC = [(Fresh weight-Dry weight) / (Turgid weight-Dry weight)] ×100 

DNA 
Markers 

Chr. 
No QTLs Ref. QTL for the 

Trait 

NAU-2954 23 qtlRWC-1 [38] Relative Water 
Content 

NAU-2715 12 qtlRWC-2 [38] 

NAU-6672 A5 qtlRWC1 [37] 

NAU-8406 A7 qtlELWL [37] Excised Leaf 
Water Loss 

NAU-2954 23 qtlELWL-1 [38] 

NAU-6790 A1 qtlCMS [37] Cell Membrane 
Stability 

Table 1: DNA markers used in the study, Chromosome no, QTLs 
name and Trait related to drought tolerance in cotton 
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Excised Leaf Water Loss (ELWL) 
Three leaves per plant were taken. Using electric balance, 
fresh weight was measured, followed by keeping leaf 
samples on bench at normal room temperature. Wilted 
weight was recorded after twenty four hours. Finally 
samples were oven dried (at 70°C) to record dry weight. 
Using formula given by [44] ELWL was calculated   

        ELWL = [(Fresh weight-Wilted weight)/Dry weight] 

Cell Membrane Stability (CMS) 
From each plant, three leave samples were used to 
measure CMS using following formula by [45]: 

CMS% =
1 − (T1/T2)
1 − (C1/C2)

 × 100 

Where, T1= Stress sample conductance before autoclaving. 
T2= Stress sample conductance after autoclaving 
C1= Control sample conductance before autoclaving 
C2= Control sample conductance after autoclaving 

DNA Marker Studies 
The leaves of all 44 varieties were used for DNA 
extraction. The selected leaves were frozen at  
-80oC. DNA was extracted by using standard CTAB 
method [46]. The DNA samples were checked for quality 
by gel electrophoresis. The DNA samples giving smear 
in the gel were rejected and only good quality DNA was 
selected for PCR studies. All 44 varieties were screened 
with DNA markers (Table 1). These markers were 
selected for relative water content, excised leaf water loss 
and cell membrane stability. PCR products were run on 
1% agarose gel. Results were saved through Gel 
Documentation. 

Results 
The analysis of variance showed that all 44 varieties 
showed significant variation for the traits relative water 
content, excised leaf water loss and cell membrane 
stability (Table 2 in supplementary data). The data for 
physiological traits is given in Table 1. DNA marker 
studies shows that among 44 selected drought tolerant 
varieties, few varieties showed containing QTLs for 
drought tolerance. DNA marker 2954, band size 150bp, 
linked with qtlRWC-1 and qtlELWL at chromosome no 
23 [38] was appeared in variety 124-F, BH-36, CIM-448, 
NIAB-999, CIM-707, 149-F, MNH-93, CRIS-134, 199-
F, CIM-506, MS-39, CIM-482, LSS, NIAB-78, MNH-
552, CIM-109, BH-118, B-557, 268-F, MNH-554, 238-F, 

4F and CIM-70 (Fig. 1) depicts presence of both QTLs. 
The size of band was similar as reported for these QTLs 
[38]. Phenotypic data (Table 2) also shows high relative 
water content with an average of 70% and low excised 
leaf water loss with an average of 2.1 in these genotypes, 
showing tolerance against drought stress.  

DNA marker NAU-2715 linked with qtlRWC-2 [38] 
was present in NIAB-111, AC-134, MNH-147, S-12, 
CIM-707, BH-160, 149-F, MNH-93, CRIS-134, 199-F, 
S-14, MS-39, CRIS-9, K-68/9, MNH-129, B-557, MS-40, 
216-F and 216-F (Fig. 1). Phenotypic data (Table 2) 
shows moderate water percentage with an average of 
55%. DNA marker NAU-6672 linked with qtlRLWC1 
[37] was appeared only in MNH-147, MNH-93 and 
CRIS-134. DNA marker NAU-8406 linked with 
qtlELWL [37] was detected only in NIAB-111, MNH-
552 and CRIS-134 with moderate values of excised leaf 
water loss (Table 2 in supplementary data). Genotypic 
and phenotypic data shows that this QTL may not be 
considered as major contributor for the trait. 

 

 
Figure 1: Screening of cotton varieties using DNA markers NAU-2954 
and NAU-2715 

Discussion  
Screening with DNA markers and recording of 
phenotypic data shows that the DNA marker NAU-2954 
linked with two QTLs, one for relative water content 
qtlRWC-1 and one for excised leaf water loss qtlELWL 
contribute high drought tolerance in cotton. This QTL 
was reported to be mapped on chromosome no 23 at 
LOD=2.74 [38]. The additive effect for this QTL was 
4.87, showing high inheritance. The varieties also 
showed high drought tolerance for relative water 
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content and excised leaf water loss (Table 1). High 
drought tolerance was associated with presence of these 
QTLs shows that these QTLs may be considered as 
major contributors for drought tolerance in cotton. To 
breed drought tolerant cultivars, the genotypes carrying 
these QTLs may be included in the breeding programs.  

Although a numbers QTLs has been detected for 
many important traits in many crops but less efforts has 
been made for examination of these QTLs in 
germplasm. In this research work some important QTLs 
has been screened in cotton varieties, considered as 
drought tolerant in Pakistan. Among these some 
varieties showed high relative water content as well as 
showed presence of QTL relevant to the trait. Similarly 
some varieties showed low excised leaf water loss as well 
as QTL for the trait. Among these, some varieties 
showed high relative water content and low excised leaf 
water loss as well as two QTLs namely qtlRWC-1 and 
qtlELWL like CRIS-134. The data represents the high 
value of these QTLs for drought tolerance in cotton. A 
variety MNH-554 was tolerant in physiological 
screening but with absence of QTLs under study, depicts 
the need of further research for major QTLs related for 
drought tolerance. 

The presence of DNA marker NAU-2954, linked with 
qtlRWC-1 and qtlELWL on chromosome 23 shows high 
drought tolerance in cotton. The variety CRIS-134 
carries QTLs for drought tolerance and may be selected 
for breeding programs. These QTLs showed high 
tolerance against drought stress in cotton. 
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