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ackground: Nitrifying bacteria in aquaculture environments are capable of removing toxic nitrogen 
compounds such as ammonium and nitrite. Using these indigenous microbial resources can improve 
shrimp production. 

Methods: Screening method was used to isolate aerobic strains of nitrifying bacteria. Species identification for 
these isolates was done by biomolecular method based on 16S rDNA gene sequence. Ammonium, nitrite and 
nitrate concentrations from the culture were determined by spectrophotometry at the appropriate wavelength. 
Temperature, pH, dissolved oxygen and salinity were measured by specialized equipment. Formation and 
development of flocs during shrimp culture were determined based on their volume and weight. A trial of shrimp 
nursery was carried out on a small scale with 0.5 m3 tanks containing diluted seawater to 16-18‰ salinity at a 
density of 400 individual/m3 for 24 days on April 2019.   

Results: This study isolated two strains of Pseudomonas (BF01 and BF03) and one strain of Cupriavidus 
oxalaticus BF02 from seawater in Thua Thien Hue province, Vietnam. These bacterial isolates have shown 
ability to remove nitrogen compounds such as ammonium, nitrite and nitrate in culture medium. Formation and 
development of flocs were found in trials of shrimp nursery with diluted seawater containing the isolates. Some 
water quality parameters (temperature, pH, dissolved oxygen, salinity, ammonium and nitrite) were kept at a 
safe level and juvenile shrimp grown normally during culture.  

Conclusion: The observations on the water quality and basic growth parameters of juvenile shrimp in the two 
treatments, diluted seawater and diluted seawater with commercial microbial products, showed that there were 
no significant differences between them with p = 0.05. This proves that three isolates have played an important 
role in shrimp nursery. 
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Introduction  
In aquaculture, shrimp farming is considered to be one 
of the important industries accounting for about four 
million tons of output worldwide each year. However, the 
productivity of shrimp depends on many factors such as 
microbial community, oxygen and nitrogen 
concentration, temperature and waste composition in the 
aquatic environment [1]. Among them, nitrogen 
concentration plays a key role and in fact, nitrogen 
sources including nitrite and ammonia are two important 
indicators of water quality not only for shrimp but also for 
other aquatic animals  [2]. 

Ammonium appears as a product of the conversion of 
organic waste in aquatic animals and the breakdown of 
food by microorganisms [3]. Whereas, nitrite is 
accumulated from the action of nitrifying bacteria or the 
ammonia oxidation [4]. These two substance groups 
directly impact on the productivity of aquaculture [2]. 
Therefore, low concentration of ammonium and nitrite 
should be maintained during farming. The management 
of ammonium and nitrite must be carried out regularly by 
water exchange. However, recent reports have shown 
that water exchange without treatment can pollute the 
environment, increasing pathogenic activity of 
microorganisms [2, 5, 6]. As a result, new technologies 
have been developed to treat water before being 
released into the environment, such as recirculating 
aquaculture system and biological flocs co-culture or 
biofloc technology (BFT) [7-10]. The BFT was 
considered the new “blue revolution” in aquaculture, this 
technology is an environmentally friendly aquaculture 
procedure based on in situ microbial production. Fish 
and shrimp are usually grown in an intensive way with 
zero or minimum water exchange. In addition, 
continuously water movement in the entirely water 
column is also required to induce the macroaggregate 
(biofloc) formation [11]. BFT enhances water quality by 
converting organic matter into microbial biomass, 
reducing feed intake by using natural feed in the culture 
system, improving the health and productivity of farmed 
shrimp, and reducing negative impacts of aquaculture on 
the environment [8, 9]. In the biofloc-based system, 
ammonium and nitrite are removed through nitrification 
by ammonia-oxidizing bacteria and subsequently nitrite-
oxidizing bacteria. Thus, heterotrophic nitrifying bacteria 
and ammonium assimilation bacteria have attracted 
great interest in the field of aquaculture science [9, 12-
14]. 

In the present work, we report some results of nitrogen 
removal efficiency of three bacterial strains isolated from 
seawater in Thua Thien Hue province, Vietnam. The 
ability to remove ammonium and nitrite in a small-scale 
juvenile shrimp culture environment of these native 
isolates opens up their potential applications in large-
scale shrimp production in the future. 

Methods 

Screening of aerobic nitrifying-denitrifying bacteria 
Enrichment and screening of nitrifying-denitrifying 
bacteria were conducted as described by Qiu et al [15] 
with slight modifications. 100 µL of seawater samples in 

Thua Thien Hue, Vietnam were added to 50 mL of 
sterilized enrichment medium containing 0.5 g/L 
ammonium sulfate, 2.17 g/L sodium succinate and 50 
mL/L mineral solution (per liter: 5 g dipotassium 
phosphate, 2.5 g magnesium sulfate heptahydrate, 2.5 g 
sodium chloride, 0.05 g ferrous sulfate heptahydrate and 
0.05 g manganese (II) sulfate tetrahydrate, pH 7.2) and 
incubated at 30°C on shaker with a speed of 180 rpm for 
7 days. Then, 100 µL of enrichment culture were plated 
on selection medium (per liter: 1 g potassium nitrate, 1 g 
monopotassium phosphate, 0.5 g ferrous sulfate 
heptahydrate, 0.2 g calcium chloride, 1 g magnesium 
sulfate heptahydrate, 8.5 g sodium succinate, 20 g agar 
and 1 mL bromothymol blue (1% in alcohol, w/v), pH 7-
7.3) and incubated at 30°C for 7 days. Blue colonies 
appeared on agar surface were selected for investigation 
of their nitrogen conversion.  

Nitrogen conversion of isolated bacteria  
Blue colonies were subcultured in 5 mL of medium 
containing (per liter) 0.84 g sodium nitrate, 1 g 
monopotassium phosphate, 1 g magnesium 
sulfate heptahydrate, 4.16 g glucose, 0.05 g ferrous 
sulfate heptahydrate and 0.02 g calcium chloride, pH 7 
and incubated at 30oC with a shaking speed of 180 rpm 
for 24 h. Culture was then transferred into new media 
consists of (per liter): 1) 3.38 g sodium succinate, 0.33 g 
ammonium sulfate, 0.1 g peptone, 0.08 g sodium 
chloride, 0.023 g calcium carbonate, 0.023 g mono 
potassium phosphate, 0.094 g magnesium sulfate , 
0.065 g sodium bicarbonate, 0.2 mg ferrous sulfate 
heptahydrate, 0.2 mg manganese sulfate monohydrate, 
0.2 mg copper sulfate pentahydrate and 0.2 g cobalt (II) 
chloride hexahydrate (for nitrification); and 2) 1 g mono 
potassium phosphate, 1 g magnesium 
sulfate heptahydrate, 2.8 g sodium succinate and 0.6 g 
sodium nitrate (for denitrification) or 0.5 g sodium 
nitrite  (for nitrification). Nitrogen conversion of isolates 
was determined based on the changes of nitrogen 
concentration in the culture medium that measured by 
the standard methods [16].  

Molecular identification 
Bacterial biomass was harvested from overnight culture 

in 5 mL of Luria-Bertani (LB) medium at 30C and 180 
rpm. Total DNA from bacterial biomass was isolated by 
AquaPure Genomic Isolation Kit (732-6340, Bio-Rad) 
following the manufacturer’s instructions. Identification of 
the bacteria was performed by sequencing 16S rDNA 
gene. Universal primers were used for amplification of 
16S region (27F: 5’-AGAGTTTGATCCTGGCTCAG-3’ 
and 1492R: 5’-GGTTACCTTGTTACGACTT-3’). 
Polymerase chain reaction (PCR) component consists of 
6 µL of Master Mix (Thermo Fisher Scientific), 10 pmol 
each primer, 50 ng of total DNA and double distilled 
water to a final volume of 12 µL. PCR amplification was 
done as follows: a genomic denaturation at 95ºC for 5 
min; 30 cycles of 95ºC for 1 min, 55ºC for 1 min, and 
72ºC for 1.5 min; and a final extension at 72ºC for 10 min. 
The amplicon was sequenced by the dideoxy chain 
termination method on the Applied Biosystem 3130 
(ABI). Phylogenetic tree of 16S rDNA gene was 
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constructed by MEGA X software with the Maximum 
Likelihood algorithm, bootstrap of 500 [17]. 

Shrimp farming trial  
Experiments were distributed on a completely 
randomized design, with two treatments (DS: diluted 
seawater and DSM: diluted seawater with microbial 
product) and three replicates per treatment. Disease-free 
post larvae 12 (10 mg/individual) of Pacific white shrimp 
(Litopenaeus vannamei) were cultured in six composite 
tanks (volume of 0.5 m3 each tank) containing seawater 
diluted to 16-18‰ salinity from natural seawater (30‰ 
salinity) and sterilized distilled water [18] at a density of 
400 individual/m3 for 24 days (April, 2019) . 

Molasses sugar was added to culture tank in a 
carbon/nitrogen ratio of 15/1 to allow microorganisms to 
form flocs [19]. The aeration was done with a speed of 
3.7 m3/min (Dargang 2HP DG-400-31) and the bottom 
mud was stirred at water flow of 3.9 m3/h by Lifetech AP 
5400 pump. For DSM treatment, weekly 1 g of 
commercial microbial product containing Nitrobacter 
spp. (6.85×105 CFU/g), Nitrosomonas spp. (3.95×105 
CFU/g) and Bacillus subtilis (3.37×107 CFU/g) from ALT 
Co., Ltd. (Vietnam) were added to culture tanks as the 
control. 

Shrimp food was purchased from Grobest Industrial 
Co., Ltd. (Vietnam) containing 42% protein. Shrimps 
were fed 3 times a day at 7:00, 12:00 and 17:00. Feed 
amount was calculated following formula:  
y = 13.391×W-0.5558, where y is the amount of feed 
provided and W is the weight of shrimp [20]. During 
shrimp culture, no antibiotics or any other substances 
were used; water quality parameters such as 
temperature, pH, dissolved oxygen (DO), salinity, NH4-
N, and NO2-N, floc dry weight and volume were 
determined every 4-5 days at 10:00. Shrimp 
performance was assessed at the end of the experiment 
based on the following parameters: growth rate (GR) by 
weight, growth rate by size, survival rate and feed 
conversion ratio (FCR is the total weight of harvested 
shrimp divided by the total amount of feed used).   

Determination of water quality parameters   
Water quality parameters during shrimp culture were 
measured by HI 9142 portable waterproof (HANNA) for 
temperature and DO, pH100A (EcoSense) for pH, and 
Sension 156 portable multiparameter meter (HACH) for 
salinity. 100 mL water from the culture after filtration with 
Whatman GF/F filter paper to be used to determine 
concentration of ammonium and nitrite by the optical 
measurement method on Shimadzu UV1800 
spectrophotometer. Determination of ammonium based 
on the indophenol reaction with o-phenylphenol (OPP) 
[21]. Nitrate is reduced almost quantitatively to nitrite in 
the presence of Cd. The nitrite thus produced is 
determined by diazotizing with sulfanilamide and 
coupling with N-(1-naphthy)-ethylenediamine 
dihydrochloride to form a highly colored azo dye that is 
measured colorimetrically [16].   

Determination of floc growth  

Floc volume (mL/L) in the culture tanks was measured 
by Imhoff cones. 

Fresh weight (FW, g/L) of floc (mg/L) was harvested at 
7:00 and dry to a constant weight at 105°C. Fresh and 
dry weight (DW, g/L) were determined by the weighting 
method following formulas: 

300

1000)( 01 −
=

mm
FW

 

300

1000)( 02 −
=

mm
DW

 

Statistical analysis 
All experiments were preformed with three replications 
per treatment. The data are represented as the mean of 
the repeats; the means were compared using one-way 
ANOVA (Duncan’s test at significance level of 0.05). 

Results  
Screening and identification of bacteria 
Three isolates of aerobic nitrifying-denitrifying bacteria 
obtained from seawater samples in Thua Thien Hue, 
Vietnam were named BF01, BF02 and BF03 (Figure 1). 
Molecular identifications for these isolates were done 
and their 16S gene sequences were deposited in the 
Genbank (NCBI) with accession numbers: MN559954 
for Pseudomonas sp. BF01, MN559955 for Cupriavidus 
oxalaticus BF02, and MN559956 for Pseudomonas sp. 
BF03.  Phylogenetic tree of C. oxalaticus BF02 and other 
Cupriavidus species was constructed as showed in 
Figure 2, of which 16S gene sequences of C. oxalaticus 
BF02 strain is 99.93% homologous with that of C. 
oxalaticus X32 (accession number in NCBI: 
MG754065.2).    

 
Figure 1: Pure culture of nitrogen-converting bacteria that 
isolated from seawater in Thua Thien Hue on LB medium. BF01: 
Pseudomonas sp. BF01, BF02: C. oxalaticus BF02, and BF03: 
Pseudomonas sp. BF03.
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Figure 2: Phylogenetic tree between C. oxalaticus BF02 and 

other Cupriavidus species was done by MEGA X software with 

Maximum Likelihood algorithm. 

Nitrogen conversion of bacteria  
Nitrogen conversion of isolated bacteria was 
investigated and data were showed in Tables 1-3. Table 
1 shows that nitrification has occurred relatively strongly, 
28 to 46.7% of the ammonium in the medium was 
removed by isolates, of which C. oxalaticus BF02 
displayed the highest ability. Although nitrite could not be 
detected in the medium, nitrate formation was found in 
the range of 2.3 to 5.1 mg/L. In second step of 
nitrification, 2.2 to 15% of the nitrite was removed and 
the nitrate was found from 0.3 to 11.47 mg/L (Table 2).  
The results in Table 3 indicate that denitrification was 
strongly conducted by two isolates of Pseudomonas sp. 
BF01 and C. oxalaticus BF02 with 55.6 to 75.8% of 
nitrate in the medium was removed. However, this ability 
of Pseudomonas sp. BF03 seems insignificant, only 
about 6%. Nitrite formation was not found in this process. 
Overall, C. oxalaticus BF02 isolate exhibited the stronger 
nitrogen conversion than the other two isolates, 
Pseudomonas BF01 and BF03. 

Isolates NH4-N removal 
rate (%) 

Formed NO2-
N (mg/L) 

Formed NO3-
N (mg/L) 

Pseudomonas sp. 
BF01 

28.0 ± 7.9b ND 4.01 ± 0.72a 

C. oxalaticus BF02 46.7 ± 4.6a ND 2.3 ± 0.31b 

Pseudomonas sp. 
BF03 

42.8 ± 1.9a ND 5.1 ± 0.88a 

Table 1: Nitrifying ability of three bacterial isolates in medium 

with ammonium. 

ND: not determined. Experimental data was expressed as the 

mean of at least three replicates ± standard error. Different letters 

in a column indicate significant differences with p<0.05 (Duncan’s 

test). These notes are used for Tables 1-3.  

Shrimp farming trial in small-scale  
Investigation of physical-chemical parameters such as 
temperature, pH, DO and salinity in both treatments, DS 
and DSM, during shrimp culture showed they were 
relatively stable and ranged around 30°C, 7.5, 7.4 and 
16.9, respectively. The differences between 
corresponding parameters were statistically insignificant 
with p>0.05 (Table 4). In general, the values of these 
parameters are suitable for shrimp farming [22].  

Ammonium concentration in both treatments increased 
from the beginning to 15th day of culture with maximum 

values of 1.19 and 1.27 mg/L, but nitrite alone increased 
continuously until the 24th day to 2.31 and 2.55 mg/L. 
However, ammonium then decreased significantly from 
day 15, to only about 0.52-0.69 mg/L (Figure 3 and 4). 
Low concentrations of ammonium and nitrite in this 
investigation, peaked respectively only 1.27 mg/L 
(equivalent to 2.34 mg/L of ammonia-N or 0.11 mg/L of 
NH3-N) and 2.55 mg/L at about 16.9‰ salinity (Figures 
3 and 4, and Table 4) during culture, did not adversely 
affect shrimp growth. 

Figures 5 and 6 show floc dry weight and volume 
increased continuously with time during shrimp culture 
with values of approximately 46 mg/L (control was 43 
mg/L) and 10 mL/L (control was 8 mL/L), respectively. 
Differences of floc dry weight and volume in both 
treatments, DS and DSM, were statistically significant 
with p<0.05.   

 
Figure 3: The time course of ammonium concentration during 

shrimp culture. 

 
Figure 4: The time course of nitrite concentration during shrimp 

culture. 

 
Figure 5: The profile of floc dry weight during shrimp culture 

(p<0.05). TN: diluted seawater, ĐC: diluted seawater with 

commercial microbial product.
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Figure 6. The profile of floc volume during shrimp culture 

(p<0.05). TN: diluted seawater, ĐC: diluted seawater with 

commercial microbial product. 

Some growth parameters of juvenile shrimp are shown 
in Table 5. Growth rate (GR) of shrimp by weight and size 
averaged 25.5 mg/day (control was 25.02 mg/day) and 
0.17 cm/day (control was 0.21 cm/day), respectively. 
Survival rates and FCRs of shrimp in both treatments 
were similar, approximately 82.5% and 0.8, respectively. 
In general, differences of growth parameters of juvenile 
shrimp between DS and DSM treatments were 
statistically insignificant with p>0.05.  

Isolates NO2-N removal rate 
(%) 

Formed NO3-N 
(mg/L) 

Pseudomonas sp. BF01 6.0 ± 0.6b 0.3 ± 0.04b 

C. oxalaticus BF02 15.0 ± 1.0a 11.47 ± 0.67a 

Pseudomonas sp. BF03 2.2 ± 0.8c 0.72 ± 0.06b 

Table 2: Nitrifying ability of three bacterial isolates in medium 
with nitrite. 

Isolates NO3-N removal rate (%) Formed NO2-N 

(mg/L) 

Pseudomonas sp. 
BF01 

55.6 ± 7.2b ND 

C. oxalaticus BF02 75.8 ± 3.3a ND 

Pseudomonas sp. 
BF03 

6.2 ± 2.6c ND 

Table 3: Denitrifying ability of three bacterial isolates in medium 
with nitrate. 

Treatment Temperature 
(°C) 

pH DO (mg/L) Salinity (‰) 

DS 30.05±0.26 7.69±0.02 7.43±0.01 16.95±0.03 

DSM 30.12±0.26 7.54±0.02 7.41±0.01 16.92±0.02 

Duncan’s 
test 

p>0.05 

Table 4: Some physical and chemical parameters of water during 
shrimp culture experiment. 
Mean of a dataset collected everyday ± standard error. This note 
is used for Tables 4 and 5. 

Treatment  GR by weight 
(mg/day) 

GR by size 
(cm/day) 

Survival rate 
(%) 

FCR 

DS 25.48 ± 0.23 0.17 ± 0.02 82.50 ± 1.44 0.79 ± 0.01 

DSM 25.02 ± 0.61 0.21 ± 0.03 82.83 ± 1.74 0.80 ± 0.03 

Duncan’s 
test 

p>0.05 

Table 5: Some performance parameters of shrimp. 

Discussion  

Many previous reports indicated that Pseudomonas 
bacteria has a strong ability to convert nitrogen [22-26]. 
However, most studies showed that C. oxalaticus 
bacteria were only able to metabolize hazardous organic 

compounds such as acrylamide [27] or metal ions as 
cadmium [28] or others as 2, 6-dibromo-4-nitrophenol 
[29]. Except for a recent report of nitrifying and 
denitrifying ability of this bacterium [30] and our findings 
thus reinforced that study.  

In general, three isolated bacterial strains can 
biologically oxidize ammonium to nitrite, the reaction 
usually was represented by the Nitrosomonas bacteria; 
or convert nitrite to nitrate, the reaction usually was 
represented by the Nitrobacter bacteria [31]. The results 
in Table 1 suggested that most of the nitrite formed from 
ammonium may have been converted into nitrate [32], 
and bacteria can use nitrate compounds as a nutrient for 
growth [33]. Data from Table 2 show that the isolates 
converted nitrite to nitrate, a nitrogen compound less 
toxic than nitrite and ammonium [34, 35]. In addition, in 
our opinion the reason for the absence of nitrite in the 
medium (Table 3) is because nitrates have been used by 
bacteria as a source of nutrition. In conclusion, these 
isolates can be applied to minimize ammonium and 
nitrite contamination in shrimp culture environment.  

In shrimp farming trials, an increase in ammonium 
concentration during the first 15 days may be due to the 
nitrogen compounds in the faeces that were excreted by 
the shrimp as metabolic waste or from shrimp feed [36, 
37]. However, microorganisms in flocs, including three 
isolates and two Bacillus isolates (data not shown), have 
been involved in ammonium conversion during shrimp 
culture resulting in a reduced concentration of this 
substance (Figure 2). The results in Table 2 show that 
the nitrite removal of three isolates was relatively weak 
so the amount of nitrite has increased continuously 
during shrimp culture (Figure 3), but it was still below the 
allowed safety threshold. Lin and Chen [38] suggested 
that a safe concentration of nitrite-N for rearing L. 
vannamei juveniles at 15‰ and 25‰ salinity to be 6.1 
mg/L and 15.2 mg/L. Also according to Lin and Chen 
[39], the “safety level” of ammonia-N or NH3-N for rearing 
L. vannamei  juveniles was estimated to be 2.44 mg/L 
and 3.55mg/L or 0.12 mg/L and 0.16 mg/L at 15‰ and 
25 ‰ salinity, respectively.   

In conclusion, the addition of commercial microbial 
product to the shrimp culture environment did not make 
a significant difference in water quality parameters and 
basic growth parameters of juvenile shrimp. This proves 
that three isolates have played an important role in 
shrimp nursery. 
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