Role of Reactive Oxygen Species in the Pathogenesis of Bronchial Asthma and Obstructive Pulmonary Diseases: Systematic Review

Imetkul Ismailov, Romanbek Kalmatov, Baktyiar Abdurakhmanov, Ali Munir Mirza, Jitendra Kumar Chaurasia

Abstract


The article discusses the role of reactive oxygen species (ROS) in the pathogenesis of bronchial asthma and obstructive pulmonary diseases. The review follows a structured approach beginning with a comprehensive search of electronic databases, then findings from the included studies were summarized and used to draw comprehensive conclusions. The authors state that increased activity of oxidative processes and insufficient activity of the antioxidant system lead to the accumulation of ROS in the respiratory tract. This leads to direct damage to epithelial cells, activation of inflammatory cells, and stimulation of inflammatory mediators. ROS also activate transcription factors that increase inflammation and airway obstruction. Thus, maintaining the balance of the oxidant-antioxidant system is an important strategy for the treatment of these diseases.

Keywords: Reactive oxygen species; Bronchial asthma; Chronic obstructive pulmonary disease; Oxidative stress; Antioxidant system   


Full Text:

PDF

References


Yaghoubi M, Adibi A, Safari A, FitzGerald JM, Sadatsafavi M. The projected economic and health burden of uncontrolled asthma in the United States. American Journal of Respiratory and Critical Care Medicine, (2019); 200(9): 1102–1112.

Adeloye D, Chua S, Lee C, Basquill C, Papana A, Theodoratou E, Nair H, Gasevic D, Sridhar D, Campbell H, Chan KY, Sheikh A, Rudan I, Global Health Epidemiology Reference Group (GHERG). Global and regional estimates of COPD prevalence: systematic review and meta-analysis. Journal of Global Health, (2015); 5(2): 020415.

Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, Celli BR, Chen R, Decramer M, Fabbri LM, Frith P, Halpin DM, López Varela MV, Nishimura M, Roche N, Rodriguez-Roisin R, Sin DD, Singh D, Stockley R, Vestbo J, Wedzicha JA, Agustí A. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. American Journal of Respiratory and Critical Care Medicine, (2017); 195(5): 557–582.

Rehman AU, Shah S, Abbas G, Harun SN, Shakeel S, Hussain R, Hassali MAA, Rasool MF. Assessment of risk factors responsible for rapid deterioration of lung function over a period of one year in patients with chronic obstructive pulmonary disease. Scientific Reports, (2021); 11(1): 13578.

Uchida M, Anderson EL, Squillace DL, Patil N, Maniak PJ, Iijima K, Kita H, O'Grady SM. Oxidative stress serves as a key checkpoint for IL-33 release by airway epithelium. Allergy, (2017); 72(10): 1521–1531.

Deng X, Zhang F, Rui W, Long F, Wang L, Feng, Z, Chen D, Ding W. PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicology in Vitro, (2013); 27(6): 1762–1770.

Lewis BW, Ford ML, Rogers LK, Britt RD. Oxidative stress promotes corticosteroid insensitivity in asthma and COPD. Antioxidants, (2021); 10(9): 1335.

Jesenak M, Zelieskova M, Babusikova E. Oxidative stress and bronchial asthma in children-causes or consequences? Frontiers in Pediatrics, (2017); 5: 162.

Balakrishna S, Song W, Achanta S, Doran SF, Liu B, Kaelberer MM, Yu Z, Sui A, Cheung M, Leishman E, Eidam HS, Ye G, Willette RN, Thorneloe KS, Bradshaw HB, Matalon S, Jordt SE. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology, (2014); 307(2): 158–172.

Eapen MS, Lu W, Hackett TL, Singhera GK, Mahmood MQ, Hardikar A, Ward C, Walters EH, Sohal SS. Increased myofibroblasts in the small airways, and relationship to remodelling and functional changes in smokers and COPD patients: potential role of epithelial-mesenchymal transition. European Respiratory Journal Open Research, (2021); 7(2): 00876–2020.

Higham A, Quinn AM, Cancado JED, Singh D. The pathology of small airways disease in COPD: Historical aspects and future directions. Respiratory Research, (2019); 20: 49.

Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, Adcock IM, Bateman ED, Bel EH, Bleecker ER, Boulet LP, Brightling C, Chanez P, Dahlen SE, Djukanovic R, Frey U, Gaga M, Gibson P, Hamid Q, Jajour NN, Mauad T, Sorkness RL, Teague WG. International ERS/ATS guidelines on definition, evaluation, and treatment of severe asthma. The European Respiratory Journal, (2014); 43: 343–373.

Patel JG, Nagar SP, Dalal AA. Indirect costs in chronic obstructive pulmonary disease: A review of the economic burden on employers and individuals in the United States. International Journal of Chronic Obstructive Pulmonary Disease, (2014); 9(1): 289–300.

Mei D, Tan WSD, Wong WSF. Pharmacological strategies to regain steroid sensitivity in severe asthma and COPD. Current Opinion in Pharmacology, (2019); 46: 73–81.

Fitzpatrick AM, Teague WG, Burwell L, Brown MS, Brown LA, Program NNS. Glutathione oxidation is associated with airway macrophage functional impairment in children with severe asthma. Pediatric Research, (2011); 69: 154–159.

Ray A, Camiolo M, Fitzpatrick A, Gauthier M, Wenzel SE. Are we meeting the promise of endotypes and precision medicine in asthma? Physiological Reviews, (2020); 100: 983–1017.

Phipatanakul W, Mauger DT, Sorkness RL, Gaffin JM, Holguin F, Woodruff PG, Ly NP, Bacharier LB, Bhakta NR, Moore WC, Bleecker ER, Hastie AT, Meyers DA, Castro M, Fahy JV, Fitzpatrick AM, Gaston BM, Jarjour NN, Levy BD, Peters SP, Teague WG, Fajt M, Wenzel SE, Erzurum SC, Israel E, Severe Asthma Research Program. Effects of age and disease severity on systemic corticosteroid responses in asthma. American Journal of Respiratory and Critical Care Medicine, (2017); 195(11): 1439–1448.

Kubo M. Innate and adaptive type 2 immunity in lung allergic inflammation. Immunological Reviews, (2017); 278(1): 162–172.

Wisniewski JA, Muehling LM, Eccles JD, Capaldo BJ, Agrawal R, Shirley DA, Patrie JT, Workman LJ, Schuyler AJ, Lawrence MG, Teague WG, Woodfolk JA. TH1 signatures are present in the lower airways of children with severe asthma, regardless of allergic status. The Journal of Allergy and Clinical Immunology, (2018); 141(6): 2048–2060.

Zhang J, Zhu Z, Zuo X, Pan H, Gu Y, Yuan Y, Wang G, Wang S, Zheng R, Liu Z, Wang F, Zheng J. The role of NTHi colonization and infection in the pathogenesis of neutrophilic asthma. Respiratory Research, (2020); 21(1): 170.

Christenson SA, van den Berge M, Faiz A, Inkamp K, Bhakta N, Bonser LR, Zlock LT, Barjaktarevic IZ, Barr RG, Bleecker ER, Boucher RC, Bowler RP, Comellas AP, Curtis JL, Han MK, Hansel NN, Hiemstra PS, Kaner RJ, Krishnanm JA, Martinez FJ, O'Neal WK, Paine R 3rd, Timens W, Wells JM, Spira A, Erle DJ, Woodruff PG. An airway epithelial IL-17A response signature identifies a steroid-unresponsive COPD patient subgroup. The Journal of Clinical Investigation, (2019); 129(1): 169–181.

Ouyang S, Liu C, Xiao J, Chen X, Lui AC, Li X. Targeting IL-17A/glucocorticoid synergy to CSF3 expression in neutrophilic airway diseases. JCI Insight, (2020); 5(3): e132836.

Carlier FM, de Fays C, Pilette C. Epithelial barrier dysfunction in chronic respiratory diseases. Frontiers in Physiology, (2021); 12: 691227.

Drake LY, Kita H. IL-33: biological properties, functions, and roles in airway disease. Immunological Reviews, (2017); 278(1): 173–184.

Klaßen C, Karabinskaya A, Dejager L, Vettorazzi S, Van Moorleghem J, Lühder F, Meijsing SH, Tuckermann JP, Bohnenberger H, Libert C, Reichardt HM. Airway epithelial cells are crucial targets of glucocorticoids in a mouse model of allergic asthma. The Journal of Immunology, (2017); 199(1): 48–61.

Milara J, Morell A, de Diego A, Artigues E, Morcillo E, Cortijo J. Mucin 1 deficiency mediates corticosteroid insensitivity in asthma. Allergy, (2019); 74(1): 111–121.

Smith BM, Zhao N, Olivenstein R, Lemiere C, Hamid Q, Martin JG. Asthma and fixed airflow obstruction: Long-term trajectories suggest distinct endotypes. Clinical and Experimental Allergy, (2021); 51(1): 39–48.

Prakash YS. Emerging concepts in smooth muscle contributions to airway structure and function: Implications for health and disease. American Journal of Physiology. Lung Cellular and Molecular Physiology, (2016); 311(6): 1113–1140.

Camoretti-Mercado B, Lockey RF. Airway smooth muscle pathophysiology in asthma. The Journal of Allergy and Clinical Immunology, (2021); 147(6): 1983–1995.

Zinellu E, Zinellu A, Fois AG, Pau MC, Scano V, Piras B, Carru C, Pirina P. Oxidative stress biomarkers in chronic obstructive pulmonary disease exacerbations: a systematic review. Antioxidants, (2021); 10(5): 710.

Couillard S, Shrimanker R, Chaudhuri R, Mansur AH, McGarvey LP, Heaney LG, Fowler SJ, Bradding P, Pavord ID, Hinks TSC. Fractional exhaled nitric oxide non-suppression identifies corticosteroid-resistant type-2 signaling in severe asthma. American Journal of Respiratory and Critical Care Medicine, (2021); 204(6): 731-734.

McGovern TK, Chen M, Allard B, Larsson K, Martin JG, Adner M. Neutrophilic oxidative stress mediates organic dust-induced pulmonary inflammation and airway hyperresponsiveness. American Journal of Physiology. Lung Cellular and Molecular Physiology, (2016); 310(2): 155–165.

Prakash YS, Pabelick CM, Sieck GC. Mitochondrial dysfunction in airway disease. Chest, (2017); 152(3): 618–626.

Tham R, Vicendese D, Dharmage SC, Hyndman RJ, Newbigin E, Lewis E, O'Sullivan M, Lowe AJ, Taylor P, Bardin P, Tang ML, Abramson MJ, Erbas B. Associations between outdoor fungal spores and childhood and adolescent asthma hospitalizations. The Journal of Allergy and Clinical Immunology, (2017); 139(4): 1140–1147.

Roberts G, Fontanella S, Selby A, Howard R, Filippi S, Hedlin G, Nordlund B, Howarth P, Hashimoto S, Brinkman P, Fleming LJ, Murray C, Bush A, Frey U, Singer F, Schoos AM, van Aalderen W, Djukanovic R, Chung KF, Sterk PJ, Adnan C, U-BIOPRED Consortium. Connectivity patterns between multiple allergen-specific IgE antibodies and their association with severe asthma. The Journal of Allergy and Clinical Immunology, (2020); 146(4): 821–830.

Fraczek MG, Chishimba L, Niven RM, Bromley M, Simpson A, Smyth L, Denning DW, Bowyer P. Corticosteroid treatment is associated with increased filamentous fungal burden in allergic fungal disease. The Journal of Allergy and Clinical Immunology, (2018); 142(2): 407–414.

Wang JY. The innate immune response in house dust mite-induced allergic inflammation. Allergy, Asthma & Immunology Research, (2013); 5(2): 68–74.

Chan TK, Loh XY, Peh HY, Tan WNF, Tan WSD, Li N, Tay IJJ, Wong WSF, Engelward BP. House dust mite-induced asthma causes oxidative damage and DNA double-strand breaks in the lungs. The Journal of Allergy and Clinical Immunology, (2016); 138(1): 84–96.

Brandt EB, Myers JM, Ryan PH, Hershey GK. Air pollution and allergic diseases. Current Opinion in Pediatrics, (2015); 27(6): 724–735.

Mathews JA, Krishnamoorthy N, Kasahara DI, Hutchinson J, Cho Y, Brand JD, Williams AS, Wurmbrand AP, Ribeiro L, Cuttitta F, Sunday ME, Levy BD, Shore SA. Augmented responses to ozone in obese mice require IL-17A and gastrin-releasing peptide. American Journal of Respiratory Cell and Molecular Biology, (2018); 58(3): 341–351.

De Homdedeu M, Cruz M, Sanchez-Diez S, Ojanguren I, Romero-Mesones C, Vanoirbeek J, Velde GV, X M. The immunomodulatory effects of diesel exhaust particles in asthma. Environmental Pollution, (2020); 263(Part A): 114600.

He X, Zhang L, Xiong A, Ran Q, Wang J, Wu D, Niu B, Liu S, Li G. PM2.5 aggravates NQO1-induced mucus hypersecretion through release of neutrophil extracellular traps in an asthma model. Ecotoxicology and Environmental Safety, (2021); 218: 112272.

Acciani TH, Brandt EB, Khurana Hershey GK, Le Cras TD. Diesel exhaust particle exposure increases severity of allergic asthma in young mice. Clinical and Experimental Allergy, (2013); 43(12): 1406–1418.

Topchubaeva ET, Kalmatov RK, Maamatova BM, Ismailov ID. Kliniko-instrumentalnye kharakteristiki sistemy organov dykhaniya u naseleniya kirgizskoi respubliki, prozhivayushchego v usloviyakh vozdeistviya zagryaznitelei atmosfernogo vozdukha [Clinical and instrumental characteristics of the respiratory system in the population of the Kyrgyz Republic living under the influence of atmospheric air pollutants]. Byulleten nauki i praktiki, (2022); 8(10): 173–183.

Tiotiu A, Kermani NZ, Badi Y, Pavlidis S, Hansbro PM, Guo YK, Chung KF, Adcock IM, U-BIOPRED consortium project team. Sputum macrophage diversity and activation in asthma: Role of severity and inflammatory phenotype. Allergy, (2021); 76(3): 775–788.

Miki H, Pei H, Gracias DT, Linden J, Croft M. Clearance of apoptotic cells by lung alveolar macrophages prevents development of house dust mite-induced asthmatic lung inflammation. The Journal of Allergy and Clinical Immunology, (2021); 147(3): 1087–1092.

Brune B, Dehne N, Grossmann N, Jung M, Namgaladze D, Schmid T, von Knethen A, Weigert A. Redox control ofinflammation in macrophages. Antioxidants and Redox Signaling, (2013); 19(6): 595–637.

Belchamber KBR, Singh R, Batista CM, Whyte MK, Dockrell DH, Kilty I, Robinson MJ, Wedzicha JA, Barnes PJ, Donnelly LE, COPD-MAP consortium. Defective bacterial phagocytosis is associated with dysfunctional mitochondria in COPD macrophages. The European Respiratory Journal, (2019); 54(4): 1802244.

Higham A, Booth G, Lea S, Southworth T, Plumb J, Singh D. The effects of corticosteroids on COPD lung macrophages: Apooled analysis. Respiratory Research, (2015); 16(1): 98.

Silveira JS, Antunes GL, Kaiber DB, da Costa MS, Marques EP, Ferreira FS, Gassen RB, Breda RV, Wyse ATS, Pitrez P, da Cunha AA. Reactive oxygen species are involved in eosinophil extracellular traps release and in airway inflammation in asthma. Journal of Cellular Physiology, (2019); 234(12): 23633–23646.

Reis AC, Alessandri AL, Athayde RM, Perez DA, Vago JP, Avila TV, Ferreira TP, de Arantes AC, Coutinho Dde S, Rachid MA, Sousa LP, Martins MA, Menezes GB, Rossi AG, Teixeira MM, Pinho V. Induction of eosinophil apoptosis by hydrogen peroxide promotes the resolution of allergic inflammation. Cell Death and Disease, (2015); 6(2): e1632.

Sousa AR, Marshall RP, Warnock LC, Bolton S, Hastie A, Symon F, Hargadon B, Marshall H, Richardson M, Brightling CE, Haldar P, Milone R, Chalk P, Williamson R, Panettieri R Jr, Knowles R, Bleecker ER, Wardlaw AJ. Responsiveness to oral prednisolone in severe asthma is related to the degree of eosinophilic airway inflammation. Clinical and Experimental Allergy, (2017); 47(7): 890–899.

Nabe T. Steroid-resistant asthma and neutrophils. Biological and Pharmaceutical Bulletin, (2020); 43(1): 31–35.

Grunwell JR, Stephenson ST, Tirouvanziam R, Brown LAS, Brown MR, Fitzpatrick AM. Children with neutrophil-predominant severe asthma have proinflammatory neutrophils with enhanced survival and impaired clearance. The Journal of Allergy and Clinical Immunology: In Practice, (2019); 7(2): 516–525.

Wang Y, Wang W, Wang N, Tall AR, Tabas I. Mitochondrial oxidative stress promotes atherosclerosis and neutrophil extracellular traps in aged mice. Arteriosclerosis, Thrombosis, and Vascular Biology, (2017); 37(8): 99–107.

Gal Z, Gezsi A, Pallinger E, Visnovitz T, Nagy A, Kiss A, Sultész M, Csoma Z, Tamási L, Gálffy G, Szalai C. Plasma neutrophil extracellular trap level is modified by disease severity and inhaled corticosteroids in chronic inflammatory lung diseases. Scientific Reports, (2020); 10(1): 4320.

Holguin F. Oxidative stress in airway diseases. Annals of the American Thoracic Society, (2013); 10(Suppl): 150–157.

Zeng M, Li Y, Jiang Y, Lu G, Huang X, Guan K. Local and systemic oxidative stress status in chronic obstructive pulmonary disease patients. Canadian Respiratory Journal, (2013); 20(1): 35–41.

Erzurum SC. New insights in oxidant biology in asthma. Annals of the American Thoracic Society, (2016); 13(Suppl 1): 35–39.

Stephenson ST, Brown LA, Helms MN, Qu H, Brown SD, Brown MR, Fitzpatrick AM. Cysteine oxidation impairs systemic glucocorticoid responsiveness in children with difficult-to-treat asthma. The Journal of Allergy and Clinical Immunology, (2015); 136(2): 454–461.

Pizzorno J. Glutathione! Integrative medicine (Encinitas, Calif.), (2014); 13(1): 8–12.

Nadeem A, Siddiqui N, Alharbi NO, Alharb MM, Imam F. Acute glutathione depletion leads to enhancement of airway reactivity and inflammation via p38MAPK-iNOS pathway in allergic mice. International Immunopharmacology, (2014); 22(1): 222–229.

Kalmatov RK, Belov GV, Muratov ZhK, Dzhumaeva LM, Ismailov ID, Nurgazieva SM. Antitsitokinovaya terapiya bronkhialnoi astmy [Anticytokine therapy for bronchial asthma]. Sovremennyi uchenyi, (2016); 2: 27–33.

Liu Q, Gao Y, Ci X. Role of Nrf2 and its activators in respiratory diseases. Oxidative Medicine and Cellular Longevity, (2019); 2019: 7090534.

Mizumura K, Maruoka S, Shimizu T, Gon Y. Role of Nrf2 in the pathogenesis of respiratory diseases. Respiratory Investigation, (2020); 58(1): 28–35.

Li D, Sun D, Zhu Y. Expression of nuclear factor erythroid-2-related factor 2, broad complex-tramtrack-bric a brac andCap'n'collar homology 1 and gamma-glutamic acid cysteine synthase in peripheral blood of patients with chronic obstructive pulmonary disease and its clinical significance. Experimental and Therapeutic Medicine, (2021); 21(5): 516.

Fratta PAM, Stranieri C, Ferrari M, Garbin U, Cazzoletti L, Mozzini C, Spelta F, Peserico, D, Cominacini L. Oxidative stress and Nrf2 expression in peripheral blood mononuclear cells derived from COPD patients: an observational longitudinal study. Respiratory Research, (2020); 21(1): 37.




DOI: http://dx.doi.org/10.62940/als.v11i2.2380

Refbacks

  • There are currently no refbacks.